Arguing again for e-exams

Presenter: Dr Mathew Hillier
Teaching and Educational Development Institute,
University of Queensland
Co-author: Dr Andrew Fluck
University of Tasmania

Get these slides (pdf)

Get the demo
http://transformingexams.com

Acknowledgement
Support for this project has been provided by the Australian Government Office for Learning and Teaching. The views in this session do not necessarily reflect the views of the Australian Government Office for Learning and Teaching or participating institutions.

Targeting...

• Supervised
• High stakes
• On campus
• Large scale

(image credit: Dr Fluck UTAS)

What we are not specifically addressing here is off campus, online only, distance education, cross institutional students – there are some existing e-solutions to address these needs.
Drivers

Policy
• Realising ‘unfulfilled potential’ in higher education
 – Also - is a lack of e-exams in higher education hampering the wider uptake of ICT in other areas of education? Ref- TAS
• National participation targets - Higher student numbers...
 e.g. UQ: 2007-2012 = 30K extra annual exam sittings.
• Graduate attributes of Australian institutions - Feature current knowledge, skills for the modern world... this means ICT skills.
• Strategic & E-learning plans - significant activity with MOOCs, online learning, blended learning, flipped classrooms all depending on ICT success.
 – An internal UQ survey of senior teaching leaders placed ‘e-assessment / online marking’ at the top of their priority list for development.

Drivers

Practical
• Hand written assessment decreasing
• Technology provides and opportunity to enhance exam questions and scenarios
 – Some examples to follow later
 – More Examples at TransformingAssessment.com
• Increasing use of ICT, study, work social
 – 98% ownership of mobile WiFi enabled devices
 – 91% (2012 UQ survey), 97% (2013 UQ survey) laptop ownership highest of any device
 – 80% of students accessing online LMS weekly
So?

All of thisleads to a growing disconnect between the way high stakes testing is conducted using pen on paper exams and students’ everyday experiences.

Are e-exams are the next step on from computer assisted marking and e-assessment of progressive assessments?

An e-exams solution is needed ... But!

[Argument Map – of a ‘wicked’ problem!]

bit.ly/eexam-map
Some More Issues

- Fairness & Equity -> equivalent environment
- Highest stakes -> must be reliable and robust
- Many stakeholders - needs/concerns
- Security (end-to-end ref IT security principles)
- Invigilation (easy to identify misconduct)
- Administration (reduce manual/double handling)
- Sustainability, efficiency, facilities, spaces, equipment, set-up, logistics, processing, workflows...

Sustainable facilities

Provision of facilities must be sustainable

- How to provide computer hardware and facilities for large infrequent e-assessment events (exams):
 - Use existing campus computer labs? (Finite in number, small 20~ish room size, problematic layouts/poor design [Dermo, 2012])
 - Build dedicated e-exam space? (good design, but costly, although capital cost done once, still finite, potentially low utilisation out of exam periods)
 - Hire / build temporary lab space? (costly and reoccurring)
 - Share facilities between institutions? (scheduling issues)
 - Provide each student with hardware? (costly ~ give or rent to students? - reoccurring, maintenance?, low utilisation?)
 - Rent or build options are not scalable or sustainable.
- Given the already high ownership of suitable equipment by students -> how can we make use of this equipment?
Issues - BYOD

• Given high ownership of laptops – we can leverage these
 – But ...
 • Diversity of devices (hardware, operating systems (Windows, Mac, Linux), software applications.
 – Need a ‘cross platform’ solution
 – Need to provide same (equivalent) software environment
 • A potential source of unauthorised assistance
 – Need ability to completely control student owned equipment for the exam duration – ref security principles.
 • Students have a lot ‘invested’ in their devices (for work, for study, for personal and social uses, etc)
 – Need to respect this domain, maintain privacy and integrity of student equipment.
 – Need to return student equipment as ‘untouched’ when done - separation of the exam environment and the student owned ‘host’ equipment.
 • Equipment does fail on occasion
 – Need appropriate back-up facilities and processes, data progressively saved, provide power, spare laptops etc

Issues

Varying technical infrastructure between / within Institutions

• How to:
 – Be applicable across the higher education sector
 – Fit into existing software and hardware landscapes
 – Leverage existing infrastructure
 – Cater for flexible needs
 – Not be a nightmare to support...
A basis for further development

- The well developed ‘eExam’ system (v4) (Andrew Fluck, UTAS) – ticks many boxes:
 - Bootable USB sticks.
 - Full operating and application suite onboard.
 - Typed student responses (human marked)
 - Student owned equipment used as host and left untouched.
 - Open source code base, commodity components.

eExam (v4) Modes

- Modes (phases of introduction)
 1. Paper replacement – computer optional (a typewriter) essay, short answer, limited multiple choice.
 2. Post-paper – a computer becomes compulsory
 - Adds multimedia prompts, video, audio and software tools can be made available in the exam so that students can construct a response.
- Responses need to be human marked either on-screen or printed then shuffled...
 ...the current project is seeking to address this! (v5)
Software tools can be made available in the exam

Ref: Dr Fluck, UTAS
The Current Process – how it works

Prep

![Prep Diagram](image)

Post Exam

![Post Exam Diagram](image)

(credit: Dr Fluck UTAS)

e-Exam system for BYOD

Current project improvements for v5 – adds:

- On-board LMS for computer marked question types (Moodle) [demo available]
- Electronic answer reticulation/workflows [in progress - TBA]

Modular architecture so academics / institutions can choose the features and mode of operation that suit them...

- **System prep by IT personnel**
 - Bootable USB stick
 - OS + Browser + LMS + other tools
 - Database for quiz (only via web interface) or Exam Script (read only)
 - Written answers (student editable)
 - Server to collate student responses
 - HDD, network interfaces (IP stack, Bluetooth, infrared etc) excluded or restricted
 - Interface components used by student: Keyboard, Screen, Mouse…

- **Exam prep by academic**

 - **Student Owned Device**
 - Student (view questions, use software tools and type answers)
Modes of use

• **Non wireless** mode *demo available*
 – Exam / LMS is on-board the stick itself.
 – Duplicating equipment to reverse copy student answer files/databases from the USB sticks to a collation location
 – Fall back in all cases - manual copying each student’s answer file(s)

• **Ad-hoc wireless** mode [feature TBA]
 – Exam / LMS will be on-board the stick itself.
 – Periodic connections to upload/update student answers on a collation server in background or via a student initiated final submission with confirmation shown on screen

• **Wireless/Network always on** mode – *demo available*
 Needs reliable, redundant, high capacity wireless/network in the exam room (best to use wired!) or just use as a secure boot image for computer labs to serve as a gateway to the institution’s LMS.
 – Doesn’t require an LMS on-board the stick
 – Web browser to access a LMS server via restricted connection
 – Custom network config by institution IT (done once, reused)

Current e-Exam v5 Demo

Desktop. Choice of modes. Background image unique for each exam for added security.
Paper equivalent and replacement exams via word processor. Links to on-board media / software tools.

Computer marked question types via on-board LMS. Integrated multimedia.
Current e-Exam v5 Demo

Computer marked question types via institutional LMS
(needs network for restricted connection – e.g. demo can *only* connect to UQ Blackboard and no other server.)

What else it could do

Computer marked question types (Moodle)

Standard [already in the demo]:
- Calculated (Wildcards and datasets, calculated MCQ)
- Matching
- Embedded Answers (Cloze Test / Gap Fill – text with multiple choice, short answers and numerical answers)
- Short Answer (sentences)
- Numerical
- True/False
- Short essay (with response template)

Custom types:
- Algebra, Multinumerical, Spreadsheet,
- Chemistry Molecular editor questions,
- Music (key signature, scales, intervals)
- Hot spots, drag and drop (labels, text, images),
- Set splitting,
- Missing words, Gapfill,
- Regular expression...

Marking: delayed, Certainty-Based Marking... manual override.
Examples – Confidence questions

- Confidence based approaches penalise guessing. Students need to choose a response and declare their level of certainty. Available in Moodle now.

<table>
<thead>
<tr>
<th>Certainty level</th>
<th>C=1</th>
<th>C=2</th>
<th>C=3</th>
<th>No Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark if correct</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Penalty if wrong</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
<td>0</td>
</tr>
</tbody>
</table>

Certainty v Mark Expected

University College London

Qu. 7:
Which structure shown below represents meso 2,3-dichlorobutane, A, B or C?

Three structures, A, B and C

http://www.ucl.ac.uk/lapt/

Examples – Short text response

Students type in a short sentence response which can be marked by computer based on pattern matching.

Available in Moodle now.

Example question

A boy climbs slowly to the top of a slide and then slides down it. At which point will his kinetic energy be a maximum? Note: Your answer should ignore the effects of friction.

You should give your answer as a short phrase or sentence.

Kinetic energy will be at maximum when at the bottom of the slide.

Examples - embedded applets

Moodle Quiz

Examples - Virtual Labs / Sims

Conduct experiments via locally run simulations\(^1\) or internet connected hardware\(^2\)

\(^1\) http://phet.colorado.edu/

\(^2\) http://www.transformingassessment.com/moodle/course/view.php?id=72
Examples – Augmented Reality Experiment

Web cam

AR markers

AR software embedded in question

http://www.transformingassessment.com/moodle/course/view.php?id=70

Examples – Virtual 3D Spaces

As if the student was doing the activity in the LMS

Set up Quiz in the LMS. Results are stored in the in grade book.

A set of scripts for Moodle and VW that acts as a bridge.

Student undertakes assessment in the virtual world

(e.g. Sim-on-a-stick)

Online (Second Life) examples see http://www.transformingassessment.com/secondlife.php
Examples – Serious Games

• Serious games, simulations, role plays. Business, science, history, language/communication.

Research program outputs

• The e-Exam system is situated within a wider research program to develop:

 – A working prototype of an exams platform and documentation allowing others to reproduce it
 – A set of example questions that can be used in e-exams
 – A research-informed set of good practice guidelines on e-exam processes and procedures.
 – A guide on preparing students for e-exams.
Further Information

Contact: m.hillier@uq.edu.au

Project website and demo
http://transformingexams.com

References upon request.

Citation